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Abstract-- The modes under which acceleration waves can propagate in elastic-plastic fluid-satu­
rated porous media have been obtained in Loret and Harireche [1. Mech. Phvs. Solids 39, 569-606
(1991)]. The implications of the existence of complex wave-speeds are analyzed here. First. like
elastic mixtures. elastic-plastic mixtures with an associative flow rule may be characterized by a
positive and finite decay coefficient: acceleration waves propagate with an amplitude that either
strictly decreases or remains constant. Moreover. the range of variation of the decay coefficient is
the same as for elastic mixtures. In contrast. when the squares of the wave-speeds are real. non­
associative flow rules may give rise to negative and/or unbounded decay coefficients. When the
squares of the wave-speeds are complex. the so-called flutter phenomenon. the decay coefficient is
found to be positive and finite.

The analytical derivations require the material state on the wave front to be constant: on the
other hand. the analysis is valid independently of the compressibilities of the solid and fluid
constituents. C 1997 Elsevier Science Ltd.

I. Ii'<TRODUCTION

Instability of the flow of fluid-saturated porous media has been analyzed for simple bound­
ary value problems in both quasi-static and dynamic contexts (e.g. Rice, 1975; Vardoulakis,
1986). In view of three-dimensional numerical applications, the analysis to be presented in
this note falls in the framework of the theory of elastic-plastic mixtures obeying deviatoric
associativity. For such a behaviour, finite element simulations of strain-localization are
described in Loret and Prevost (1991). The phenomenon displays a typical velocity pattern
where the fluid is attracted to the shear-bands which are zones of intense shearing and
dilation. It is known that strain-localization can be viewed as the limit of an acceleration
wave whose speed vanishes, hence the term stationary discontinuity (HilL 1962). An analysis
of the nature of the wave-speeds in elastic-plastic mixtures is performed in Loret and
Harireche (1991): conditions for the existence of strain-localization are derived and, in
addition, it is shown that non-associativity may imply the existence of complex squares of
wave-speeds, the so-called flutter phenomenon. For hypoelastic materials, which have no
unloading branch. the interpretation of flutter given by Rice (1976) is to think of harmonic
waves that propagate through the material but whose amplitude increases.

Here we consider the propagation of acceleration waves. Under simplifying assump­
tions concerning the material state on the wave-front, we find that, like elastic mixtures
(Biot, 1956; Bowen 1976). elastic-plastic mixtures with an associative flow rule may be
characterized by a positive and finite decay coefficient. that is, acceleration waves propagate
with an amplitude that either strictly decreases or remains constant. In contrast, outside
the flutter region, non-associative flow rules may give rise to negative and unbounded decay
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coefficients for some material parameters and certain propagation directions. On the other
hand, inside the flutter region, the decay coefficient is found to be positive and finite.

The paper is organized as follows. First the constitutive equations for an elastic-plastic
mixture developed in Loret and Harireche (1991) are briefly recalled (Section 2) and the
eigenvalue problems yielding the wave-speeds and modes under which acceleration waves
can propagate are deduced (Section 3). Next. the evolution of the amplitude of an accel­
eration wave is given an explicit form characterized by a decay coefficient (Section 4).
For both compressible and incompressible fluid and solid constituents, a qualitative and
quantitative analysis of the sign and boundedness of the decay coefficient is presented and
the implications of the existence of real and complex wave-speeds are emphasized (Sections
5 and 6).

The analysis presented in this note is restricted to small perturbations relative to a
natural configuration. Unless stated explicitly, we use the convention of summation over
repeated mute indices.

2. CONSTITUTIVE EQliATIONS FOR A MIXTURE

We consider continuum media that are linear isotropic with respect to their elastic
properties but whose plastic properties may embody any kind of anisotropy. The consti­
tutive equations relate the rates of the partial stress-tensors t' to the velocity-gradients
3vjcx; here and throughout the note, the greek indices:l. and f3 apply to the solid (:I. = f3 = s)
and fluid (:I. = {J = w) phases or constituents.

Each phase :I. is endowed with its own velocity V,. Both solid and fluid phases are
inviscid, both solid and fluid constituents are a priori compressible. The fluid is a perfect
fluid whose partial pressure is denoted by pH; thus f' = - pHfJ, with fJ denoting the identity
tensor in a three-dimensional space.

The rate constitutive equations developed in Loret and Harireche (1991) can be recast
in the following form

(1)

(2)

where the fourth-order tensors .w'/!, which are endowed with the minor symmetries in
their first two and last two indices, are rank-one modifications with respect to the elastic
constitutive contributions:

I.w" = E' - jf(E" : P) ® (Q: E"),

I.w'" = ).,,,1 - H(i';H1: P) ® (Q: E"),

I
1'" -' I--(E"'P)®(Q' '. I)-~. , - }·I'll H' . 1·,\'11'

I
.c/"" = i.,,1 - H(i.;"I: P) ®(Q: i.;"I) .

(3)

(4)

In the above formulas, ® denotes a dyadic product. a dot ",' denotes a scalar product, a
double-dot ':' stands for the trace of the scalar product. e.g. in cartesian axes P: Q = PUQij,
(E" : P)/j = E'/jUPkl and P and Q are the unit outward normals to the plastic potential and
yield surface, respectively, both being assumed to be smooth. I is a loading/unloading index,
namely I = I for plastic loading, when the stress point is on the yield surface and the plastic
index i. is strictly positive:
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(5)

and I = 0 otherwise. The modulus H is assumed to be strictly positive in order to exclude a
locking behaviour:

H = h + he > O. he = Q: E'" : P; (6)

E'. E" and E'" are isotropic fourth-order tensors. In the basis (I. J), they are defined
by their respective components (/.,,211,). (I.;. 2f.1J and (1.:'.211,) :

n'i.: = 1'1_ - - i.\\\~
11\1

and
. n'

I-.Ill = I· S \\· - -/~II ~

n"
(7)

n'l E ]0. 1[. :J. = .1', \1 is the volume fraction of phase :J. :

n' +n" = I :

I and J are fourth-order basis tensors defined in cartesian axes as follows:

(8)

(9)

The elastic material response is defined by the four constants I." I. m • I." and f.1, which
can be related to measurable quantities like the Biot and Skempton parameters (see e.g.
Bowen. 1982: Loret and Harireche. 1991). The requirement that the elastic strain energy
function be positive-definite places restrictions on the ranges of these parameters, namely

f.1, > O.

. ,
" , I·.~ll

where I .., = I., - -.-.
1'\1

(10)

These restrictions are known to imply the existence of real and strictly positive elastic wave­
speeds.

Remark 2.1

Symmetry 0/ the constitutit:e equations. Observe that, if the solid phase. or skeleton,
obeys an associative flow rule, that is P = Q. the constitutive equations of the porous
medium display the major symmetry property.

Remark 2.2

Stress-rates. As for the rate of stress involved in the definition of the constitutive
equations. we shall neglect the corotational terms. so that the superimposed dot denotes a
priori a material time-derivative which, in the following linearized analysis, we approximate
by the partial derivative with respect to time r'/('t.

Remark 2.3

Sands and incompressihle constituents. The above description may be applied to describe
the behaviour of rocks and sands. For rocks, the compressibilities of the solid and fluid
constituents do not usually differ by many orders of magnitude. On the other hand, the
grains in sands are much less compressible than the fluid so that the elastic parameters
satisfy the relation (Bowen, 1982):
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whence ).,,, = 0 and
nU'

;~.~ = ;~s = ;~s. (11 )

If both constituents are incompressible and in absence of chemical reactions, the con­
servation of mass of both constituents constraints the volumetric strain-rates:

n' divv, +n" divv" = O. (12)

Moreover, for the fluid-pressure to be indeterminate, the following asymptotic relations
must hold:

I .... -> ex;, A"" -> 00, while i.S\I = 0 and A, = A,. = i. s <00. (13)

To deduce the constitutive equations of the medium with both constituents incompressible,
one can use the following limit procedure:

{
replace ;., by i" + i.~,,! i.",

J use eqn (11) and take the limits (13).

The result is best expressed in terms of Terzaghi stress 1":

and then

(14)

(15)

t'" = .Rf! *.1' . ovs

- .ox'
/

d*'s = E*' - -(E*': P) (8)(Q: E*'),
H

(16)

where / is another loading/unloading index, namely / = I for plastic loading, when the
stress point is on the yield surface and the plastic index I. is strictly positive:

. I ( . OV')I = - Q' E*" . - .. -' > 0. H . . ex . H = h+he > 0, he = Q:E*':P (17)

and / = 0 otherwise. The elastic tensor E*' has components (I." 2/lJ in the basis (I, J). For
sands and incompressible constituents, the constitutive equations above reduce to those of
Prevost (1980).

3 ACCELERATION WAVES IN THE ELASTIC-PLASTIC MIXTURE

For each phase, x = s. w. of the porous medium, the balance of momentum

divC+p,+p'(b,-a,) = 0 (no sum over x) (18)

involves, in addition to the usual terms present in single phase solids, namely divergence of
the stress tensor, body force per unit mass b, and acceleration a,. the apparent mass density
p' and the momentum supply p, by the rest of the mixture; momentum supplies are subject
to the constraint

P,+P... = O. (19)

The balance of momentum equation holds pointwise. except along a singular surface
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of order I (see e.g. Eringen and Ingram, 1965). Singular surfaces of order I display a
velocity discontinuity, while, across singular surfaces of order 2, the velocity is continuous
but the acceleration and the velocity gradient are not. Here, only the existence and propa­
gation of the latter are considered.

Let 1J(x, t) be a vector- or tensor-valued function which is pointwise continuous and
which has continuous derivatives except on a singular surface I of local normal o(x, t)
whose speed of displacement will be denoted W; let 'I(x, t) be the normal jump of the spatial
gradient of 1J. The jumps across I of the spatial- and time-derivatives of 1J are connected
by Hadamard's compatibility conditions (Truesdell and Toupin, 1960, eqn 180.5) :

r0
1Jl~ = 'I®O,

ex r0
1JlI -::;.- = - W'I.

et
(20)

Since we envisage a linearized analysis around an equilibrium state, the mass density p' in
eqn (18) is fixed to its reference value and the acceleration a, is approximated by ov)ot;
thus we shall make no difference between the speed of displacement Wand the two speeds
of propagation with respect to the particles of each phase (', = W - v,' o.

To compute the acceleration wave-speeds, we need a constitutive assumption for the
momentum supplies. They will be assumed continuous across singular surfaces of order 2.
Therefore application of Hadamard's compatibility conditions with 1J = e and 1J = v' to
the balance of momentum equations of the two phases yields

(no sum over :x). (21 )

Insertion of the constitutive equations (I) and (2) in the above relations. accounting for
Remark 2.2., yields a generalized eigenvalue problem for the squares of the wave-speeds
Wc:

where

i A"- WCM"

L (o'A",)T
(22)

Axil = O' ,r;d'il • 0, M" = p'(j (no sum over:x). for :x, fJ = S, IV. (23)

To derive eqn (22), one has accounted for the fact that the fluid is perfect, thus the
discontinuity of the spatial gradient of the velocity in the fluid 'I" is aligned with the wave
normal 0 due to eqn (21)

'I" = ('I". . 0)0. (24)

Also, the special structure of the matrices A'II has been exploited (see Loret and Harireche,
1991, eqns 4.4-7):

A'" = (A"" 0) ® o. A'" = 0 ®(o' A"'). A"'" = (0' A""· 0)0 ® o. (25)

In addition, one has assumed the two sides of the wave-front to follow the plastic branch
of the constitutive one. Consequently, there are at maximum four possible modes of
propagation, each one associated with a solution W2 of eqn (22). Loret and Harireche
(1991) present a detailed analysis of the nature, real or complex, of the wave-speeds; they
also order the wave-speeds when they are real.
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Reduction to an eigenvalue problem. By applying the following generic transformations
to eigenvectors and to matrices, respectively,

(26)

the generalized eigenvalue problem (22) may be reduced to an eigenvalue problem:

where 14 is the identity matrix in ;].£4 and

n,,W'fi' n
A#'fi = for 'l., fJ = S, H' (no sum over 'l., fJ).

Jp'p fi

(27)

(28)

Equations (27) and (28) show clearly that the major symmetry of the constitutive equations
is inherited by the normalized pseudo-acoustic matrix A". Thus, for an elastic-plastic
skeleton obeying an associative flow rule, the eigenvalue problem is symmetric and. there­
fore, the squares of wave-speeds and eigenvectors are real.

Remark 3.2

Incompressible constituents. If both constituents are incompressible, the discontinuities
'1, are constrained by the incompressibility condition (12), namely:

(29)

Therefore the number of modes of propagation is now at maximum three. The associated
eigenvalue problem can be obtained using the limit procedure (f), or directly from the
balances of momentum by eliminating the fluid pressure (Loret and Harireche, 1991)

where

A*" = n' .'41*'" n, M = p'(t5+ (r-I)n ® n)

and r is a scalar greater than I :

(n'.)2 p".r= 1+ - -.
n" p'

Therefore, if necessary. reduction to an eigenvalue problem is still possible and

(30)

(31 )

(32)

(33)

4. PROPAGATION OF PLANE ACCELERATION WAVES

From the previous section. we know the modes under which plane acceleration waves
propagate. We shall now study how their amplitudes vary in time. This analysis requires
knowledge of the evolution of the wave-speed on the wave front. In contrast to linear
elasticity where the wave-speeds in a given direction of propagation depend on material
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constants only, the elastic-plastic wave-speeds depend on the material state, that is stresses
and hardening parameters. In a general initial- and boundary-value problem, the latter are
functions of point. To be able to carry the analysis further, we consider a hypothetical
situation where the material state on the wave-front is constant; then, so remains the speed
of displacement W.

To proceed further, we need also to substantiate the qualitative assumption made in
the previous section concerning the momentum supplies. Indeed, we shall adopt simply an
isotropic Darcy's law that introduces a single constant material parameter ~ > °pro­
portional to the inverse of the permeability (Bowen, 1976):

(34)

Notice that buoyancy terms need not to be included since they would disappear anyway in
this linearized analysis. Moreover, the rates of body forces b" 'l. = S, \1", are assumed to be
continuous across the wave-front. Thus upon derivation with respect to time, the linearized
equations of balance of momentum (18) yield the discontinuity equations:

(35)

with £, = I for'Y. = s, £, = - I for'l. = II'. The evolution of the amplitude of the acceleration
wave-front is expressed through a differential equation in terms of the displacement deriva­
tive (Truesdell and Toupin, 1960, eqn 179.8) :

15 [(-'V'l erev,]. ? :[(~v,] ,- - = - -: + - .-- .(Wn)
bt?t ?t?t.?x I ct .

(36)

Now, since the velocity is continuous across the front that travels at constant speed Win a
given direction n, the iterated kinematical compatihility equation (Truesdell and Toupin.
1960, eqn 181.8) simplifies to

where the vector A, is called induced discontinuity:

(37)

for iJ kE [1, 3]. (38)

Due to the iterated geometrical condition ofcompatihility (Truesdell and Toupin, 1960, eqn
176.8), the discontinuity of the second spatial derivative of the velocity can be cast into a
dyadic form that also involves the induced discontinuity:

for i,j, kE [I, 3]. (39)

When introduced in the rate form of the balance of momentum (35) and in the constitutive
equations (I) and (2), the above iterated compatibility equations yield the evolution equa­
tions for the discontinuities of acceleration I(lv)?t], 'l. = S, )1":
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2 ,,6 [av,,] = (A"f! _ W2 /'6. (j)'A +c([avo

,] _ [avo,,]).
P bt at P ,,/! /i - at at

(40)

(41)

Due to the particular structure of the matrices Am and AU". eqn (25), the products A'''' A...
and A....... Au involve only the normal component A" . n. Since the acceleration in the fluid is
aligned with the propagation direction n, eqn (24), the wave front is characterized by the
four component vector V = [[avjat] [ev,,/at]· n]T. Therefore the evolution of the wave­
front is given by eqn (40) and the normal component of eqn (41):

with

6 , E
2M'-:;-V =(A- WCM) 'A-c-'V

Of - P'

A=l .. A: J and E=pll (j -lnJ.
1.1" n _nT

(42)

(43)

Since we assume the state on the wave-front to be fixed, the unit left and right eigenvectors
of the generalized eigenvalue problem (22), namely eL and eR, are constant. Therefore,
multiplication of the evolution equation (42) by the unit left eigenvector eL yields a differ­
ential equation that is easily integrated to yield the amplitude IVI = (I [evjOt]i2 +
I[ov,)et] . n1 2)1 2:

_IV_I(_t) = lexp(- _~ Xt)1 X= ~eL_'_E_'e_R
IVI(O) 2p" eL • M· eR

(44)

Since the coefficient ~ is a positive real number, growth or decay of the wave-front is
governed by the sign of the non-dimensional decay coefficient X when the latter is a real
number. For an elastic-plastic skeleton obeying an associative flow rule, the eigenvalue
problem, eqn (22), is symmetric (Remark 3.1). thus the wave-speeds are real and the left
and right eigenvectors are one and the same. Since the matrix M, eqn (23), is definite­
positive and the matrix E. eqn (43), is symmetric semi-definite positive, the coefficient X is
then positive or zero and propagation is accompanied by a wave-front whose amplitude
either strictly decays or remains constant.

This conclusion does not hold a priori if the solid skeleton obeys a non-associative
flow rule. P i= Q, in eqns (3) and (4). Moreover, since then the wave-speeds may be complex,
the decay coefficient is the real part of X. ~e(X), rather than X itself.

The evolution equation (42) yields not only the decay coefficient but also the part of
the induced discontinuity which is orthogonal to the eigenmode eR

; in fact. when the wave­
speed has single multiplicity, one can show that this part is uniquely defined. The situation
is more complex for multiple wave-speeds where each case needs to be treated separately
(see case d, Section 5. concerning incompressible constituents).

Remark 4.1

On a direct evaluation of the decay coefficient X. To obtain the decay coefficient for a
given wave-speed W. the natural approach is to calculate first the associated left and right
eigenvectors eR and eL

. However. if W is a wave-speed of single multiplicity. considerable
algebraic simplifications result from the alternative procedure below.
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Let W 2(0) = W 2 be an eigenvalue with single multiplicity of the generalized eigen­
problem (22) and let eR(O) = eRand eL(O) = eL be the associated right and left eigenvectors.
Consider now the extended eigenvalue problem:

(45)

For' a sufficiently small real number, the eigenvalue W2(O is an analytic function of'
(Stoer and Bulirsch, 1980, p. 389). Therefore scalar multiplication of eqn (45) by the left
eigenvector eL(O) = eL

, differentiation with respect to ( of the resulting product and esti­
mation of the derivative at , = 0 yields:

dW 2 eL'E'eR

·-v-«( = 0) = X = ._--- -.
d~ - e'· M' eR

(46)

Notice that the products by eL are not inner products in the usual sense, that is. they
remain unchanged even if eL is complex (Wilkinson, 1965, eqn (3.10), p. 4).

The procedure breaks down at an eigenvalue of multiplicity greater than one, where
the nature of the eigenspace may be more complex. Let us simply consider the case of a
double eigenvalue, for A a non-symmetric matrix. Then, the eigenvectors may not be unique
or, if the eigenspace is defective, the left and right eigenvectors may be well-defined and
then they are orthogonal with respect to the matrix M, that is (Wilkinson, 1965, eqn (7.5).
p. 10):

(47)

which is in strong contrast with the case of single multiplicity, where this equality occurs
only for eL and e R associated to distinct eigenvalues. This result suggests that, in the vicinity
of a wave-speed of multiplicity greater than I. the decay coefficient for non-associative flow
rules may become unbounded: this phenomenon will actually be observed for double wave­
speeds different from elastic wave-speeds.

Remark 4.2

The case of incompressible constituents. For incompressible constituents, the decay
coefficient X can be obtained by considering first the compressible case above and then
using the limit procedure (5). Alternatively, one can proceed directly using the fact that
the fluid pressure is indeterminate. Using Terzaghi's effective stress, eqn (15), equations
(35) become:

6 rev,] _ , n' [ i
1t"] ([ev,] rev,,])2p'-::- --;.,-'- =(A*"-psw-())·~,+- div-~ -~ - ---;;-

bt ot n" et et ot

b Fv] r at"] ([('""v] [av ,])2p" ft l c;' = ldiv et _p" W2~,,+~ '7) - a~ .

Due to eqns (20) and (24) and to the incompressibility condition eqn (12), we have

rav,,] = _ ~ ([c>,], .n) n.l at n" ot

(48)

(49)

(50)

Similarly, due to the constitutive equation (2) and to the iterated geometrical condition of
compatibility, eqn (39), [div et"jct] is aligned with n. Also due to the incompressibility
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condition eqn (12) and to eqn (39), the induced discontinuities are balanced by the
condition:

n'(~, . 0) +n"(~" . 0) = o.

Therefore, the projection of eqn (49) along 0 can be written as

b (n\ ([?VJ )) [?t"j.. n'" ([CV J )-2p"-.- - - ..-\. 0 0 = div-,- +p"W2 -(~\ '0)0+ --"- ~'o o.
ot n"· ct I't n" n" ct

(51)

(52)

Subtraction of eqn (52) multiplied by n'/n" from eqn (48) yields the evolution equation for
the 3-component vector V = [CVjct] in the solid phase

(53)

where the 3 x 3 matrix M has been defined by eqn (31) and the 3 x 3 symmetric matrix E
takes a similar form:

E = p'(15+.':C D ® 0)2 = p'(15+ ( 1-.;- -I) D® D).
n" (n")c

(54)

The wave-front in the fluid-phase is then given by eqn (50). Since the differential equation
(53) has the same form as for compressible constituents, eqn (42), the evolution of the
amplitude of the vector V is still given by eqn (44) but now with the matrices M and E
given respectively by eqns (31) and (54) and with the 3-component vectors eLand eR now
left and right eigenvectors of the generalized eigenvalue problem (30).

Remark 4.3

Bounds for the decay coefficient. For compressible constituents, the fact that E, eqn
(43), is only semi-definite positive implies the possibility for the wave to propagate without
diffusion, a situation termed dynamically compatible. This case has been analyzed for an
elastic mixture by Biot (1956) and Bowen (1976). Their result will be rederived later using
the procedure outlined in the Remark 4.1 above. Instead of using the eigenvectors associated
to the generalized eigenvalue problem (22). one may use the left eeL = eL

# and right e#R = e
R

#

eigenvectors defined by the normalization eqn (26). Then the decay coefficient takes the
form:

(55)

Thus for elastic or elastic-plastic constituents with an associative flow rule, the decay
coefficient appears in the form of a Rayleigh quotient associated to the symmetric semi­
definite positive matrix E#. Consequently, it is bounded below and above by the smallest
and largest eigenvalues of this matrix:

p'o~ X ~ 1+- for elasticity or associative elastoplasticity.
p"

In the next section, these bounds will be tightened for incompressible constituents.

(56)
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5. GROWTH AND DECAY FOR INCOMPRESSIBLE CONSTITUENTS

For a plastic eigenvalue W" of single multiplicity, the decay coefficient X can be
calculated using the procedure described in Remark 4.1. One computes first the eigenvalues
W2(O that make singular the matrix A*,s+(E- W"M or equivalently the matrix Z:

A*\S E M
Z = - +C--- - W" ~ .

p' . p' p'

The determinant of the latter can be cast in the form:

(57)

(58)

(59)

The coefficients Uo and u i((). i = I to 2. above are given in Appendix A. Notice first that, if
the shear wave-speed c~ has multiplicity one, it follows from the factorization above and
eqn (46) that the associated decay coefficient is equal to one like for an elastic behaviour
(Bio!, 1956).

Let us now turn to the study of the decay coefficients associated to the plastic wave­
speeds. If the solutions W;" c" = ± I. to F( W") = 0 are real. namely

then the coefficients X,,, = d W" d((( = 0) associated to H<, are simply:

(60)

(( = 0). (61 )

If the roots to F( we) = 0 are complex conjugate. then the real part of X,,, is the same for
both roots and

I dUI
Re(X ) = - - - (c = 0)

"I 2uo d(' .
(62)

When applied to the coefficients u" i = 0 to 2, Appendix A. the above formulas become.
outside the flutter region where the squares of the wave-speeds are reaL

I( I) CW ( 1)( 2f.l.,x+ry )X = .. 1+-··· - 1-·· 1+--- r
"2 r(n")" 2JA(( = 0) r(n")" Hr'

(63)

while. in the flutter region where the squares of the wave-speeds are complex conjugate.

Re(X
i

1) = ~(I + __1_) > 0
2 r(n" )"

(64)

is independent of the plastic material constants.
Key parameters that decide of the nature of the wave-speeds are, besides the normalized

plastic modulus H;2f.l,. the scalar r involving the longitudinal and shear elastic wave-speeds
c~ and c~, respectively,
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(65)

and the couple (ry, x), with r defined by eqn (32) and x and y by eqn (A.5). Indeed, the
discriminant .1(0), eqn (60), may be expressed in terms of these parameters:

(
2J1\)2 ,(2J1\) ,.1= H (ry-x)' +2 H (ry+x)r+r.

In the elastic limit, H ---> c:JJ, the decay coefficients (63) simplify due to (66) :

(66)

I( I) £( I) r IX =- 1+-- -- I-~-- = I
'" 2 r(n"V 2 r(n"V 1-.-,

renT

for W = c~

for W = cy
(67)

where £ = £wsign(r) is equal to -1 for the shear wave-speed and 1 for the longitudinal
wave-speed. Notice that, due to the definition of r, eqn (32), the elastic longitudinal wave
is always more diffusive than the shear wave. namely:

I
.~~- > I.
r(n"V

(68)

Also, notice that the decay coefficient in the flutter region is half way between the elastic
decay coefficients.

The matrix E, eqn (54), is now symmetric positive-definite. Thus acceleration waves
in incompressible constituents, whether elastic or elastic-plastic with an associative flow
rule, can not propagate without diffusion, that is, the so-called dynamic compatibility is
excluded. Moreover, the above inequality implies then that the decay coefficient X, eqn
(55), is greater than one. Hence the lower and upper bounds, eqn (56), are strictly tightened
to

I
I :::;; X:::;; ---, for elasticity or associative elastoplasticity.

r(n")'
(69)

These bounds do not hold for non-associative flow-rules. To elaborate further on that
point, we assume deviatoric associativity to hold, that is only the deviatoric parts of the
normals to the plastic potential P and to the yield surface Q are colinear. Then, the scalar
y = yen), eqn (A.5), is positive or zero; since x is negative for an associative flow rule, a
necessary but not sufficient condition for x = x(n) to be positive is that the volumetric parts
of P and Q are not equal. Moreover if r is negative, complex wave-speeds are available
for the directions n such that x = x(n) > 0 and for normalized plastic moduli H/2J1, within
a certain range that renders the discriminant .1(0), eqn (66), negative (see Loret and
Harireche, 1991, for details).

A qualitative analysis of the shape and sign of the decay coefficients X associated to
the two plastic wave-speeds involves also the normalized plastic modulus H/2J1n the scalar
r and the directions of propagation n contained implicitly in the couple (ry, x). This analysis
delineates four cases as follows.

Case a
r < 0, x > 0, ry > O. Along the directions that ensure both x and ry to be strictly

positive, flutter may occur for a certain range of plastic moduli. Indeed, the discriminant A
is zero when the normalized plastic modulus is equal to H~:/2J1" £H = ±1 where
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'Re(X)

1
r(n"')3 -

flutter zone

Fig. I. Incompressible constituents. Sketch of the variations of the decay coefficient associated to
the largest plastic wave-speed. The decay coefficient associated to the elastic shear-wave is I and the

one associated to the elastic longitudinal wave is I :r(I1")'. Case a: T < O. X > O. rr > O.

(70)

and ~ is negative for H E [H~l~ -I' H~~ I]' Near the zeros of 11, X,,, behaves essentially like
I/J11, to within a multiplicative coefficient whose sign is that of -f.Hf. W'

The decay coefficient X'Jj is zero when the normalized plastic modulus is equal to
H~~rr;,,/2J1s where

(71 )

should be positive, which is always true for the largest plastic wave-speed f." = I ; for the
smallest plastic wave-speed f. w = - I, the sign of this modulus depends on the propagation
direction n. Indeed, the following inequalities can be proved:

[0>- H"um
-;;;.--- 1:= 1

>-<

?" lH~~m_ 1 ): 0

Jry
for vrn" < _.-:_ < --

~x y/rn"

otherwise.

(72)

The qualitative variations of the decay coefficients X as functions of the normalized modulus
H/2J1s are shown on Figs I and 2. Notice the behaviour of X at the extremities of the flutter
region where the plastic wave-speed has multiplicity two: the eigenspace is defective by
one dimension, the left and right eigenvectors are M-orthogonal, eqn (47), so that X is
unbounded.

Case b
x < 0, ry > O. Now if x is negative, it is clear that none of the moduli that make zero

the discriminant 11(0) and the decay coefficients is real positive. Consequently, the decay
coefficients remain real positive and finite (Fig. 3).
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Re(X)

1

o

flutter zone

2j.£.
JiNU'R(=-1

Fig. 2. Incompressible constituents. Sketch of the variations of the decay coefficient associated to
the smallest plastic wave-speed: for small normalized moduli H/2/l., the sign of the decay coefficient

depends on the direction of propagation. Case a: T < 0, X > 0, IT > 0.

'Re(X) = X

1
r(n'?

1

o

fW .sign(T) > 0

fW sign(T) < 0

Fig. 3. Incompressible constituents. Sketch of the variations of the decay coefficients. This case is
typical of an associative flow rule where I 0( X 0( Ir(n")'. Case b: x < 0, ry > 0.
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1
r (n"')2

1

o

fW signeT) > 0

fW signeT) < 0 ~-------
Fig. 4. Incompressible constituents. Sketch of the variations of the decay coefficients. The sign of
the decay coefficient associated to the wave-speed which is equal to the shear wave-speed in the

elastic limit depends on the direction of propagation. Case c: T > O. X > O. IT > O.

Case c
T > 0, X > 0, ry > O. The four moduli that make zero the discriminant L1(0) and the

decay coefficients can be ordered as follows:

IT I
for yI 1'11" < ~-'-' < -~-,

y x ylm"

otherwise.

(73)

Consequently the discriminant L1(0) is strictly positive so that the decay coefficients are
finite. On the other hand, the coefficient X," ~ _ I associated to the smallest plastic wave­
speed may be zero for some directions when H:,~m I is positive (Fig. 4).

Case d
x = 0 or ry = O. When x or ry are zero, at least one plastic wave-speed is equal to an

elastic wave-speed. the so-called neutral wave: Table I summarizes the different possibilities
and gives the associated eigenspaces. If the elastic shear-wave speed has multiplicity greater
than one, the procedure defined in Remark 4.1 cannot be applied and the system of
evolution equations (53) has to be considered directly. The analysis of all the particular
cases given in Table I shows that the decay coefficient X and the part of the induced
discontinuity L1, which is orthogonal to the propagation vector eR can be solved uniquely
except when the eigenspaces are defective and of dimension I : in the latter cases, additional
equations would be needed to define the induced discontinuity.

Consequently, whether elastic or elastic-plastic with an associative flow rule, incom­
pressible constituents are characterized by a strictly positive and bounded decay coefficient,
eqn (69). In strong contrast, for non-associative flow rules, there may exist, depending on
material parameters, directions along which acceleration waves grow exponentially in time,
presumably giving rise to first-order waves. On the other hand, the decay coefficients
associated to wave-speeds whose squares are complex are strictly positive.

Figures 5-9 are intended to quantify the qualitative features displayed by Figs I 4.
For that purpose, the material termed 'material r in Loret and Harireche (1991) is
considered. Its characteristics are as follows:
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Table I. Right and left eigenvectors of the generalized eigenvalue problem for incompressible constituents. Notice
that, in the elastic-plastic case A. the eigenspace is defective by one dimension when the two plastic wave-speeds

coalesce

Wave speeds

A.
W = cY single root
W = c~ double root

B.
W = c~ = cy triple root

A.
2 roots W # c~. # cy
W = c~ single root

B.
I root W # c;. # cy
W = cy single root
W = c; single root

c.
W = cy double root
C I. a' n = O. b· n = 0
C2. a . nolO. b' n = 0
C3.a·n=O.b·n#O
W = c~ single root

O.
I root W# c;. # c;
W = c~ double root

Dl. a ~ n. b - n
D2. a ~ n. b ~ n
D3. a ~ n. b - n
D4. a ~ n. b ~ n

D5.
E. W = c~ triple root

El. a ... n. b - n
E2. a ~ n. b ... n
E3. a ~ n. b - n
E4. a ~ n. b ... n

E5.

Right eigenvectors

Elastic hehariour
if r # 0

n
plane -l n
if r = ()

/I'

Elastic-plastic hehm·iour
if X # O. IT # ()

A(a,n)
n 1\ b

if x = O. 2/l,Yl+Hr # O. r # 0
A(a.n)

B(a.b,n)
n 1\ b

if x = 0, 2{lfl + Hr = O. r # 0

plane [a. n]
n
a

n 1\ b

A(a.nl

if n· = O. 2{I,x+ Ifr # O. r # 0 and
plane -l n

plane [O(b. a. n). n 1\ b]
plane -l n

n 1\ b
orifr=O.x-IT#O

plane -l b

if rr = O. 2{1,.x+ Hr = 0 and
plane -l n

plane [n. n 1\ b]
./1'

n 1\ b
or if r = O. x - IT = 0

plane -l b

Left eigenvectors

idem

A(b. n)
n 1\ a

A(b. n)
B(b,a.n)

n 1\ a

plane [b. n]
b
n

n 1\ a

A(b.n)

plane [O(a, b, n), n 1\ a]
plane -l n
plane -l n

n 1\ a

plane -l a

plane [no n 1\ a]
plane -l n

/I'
n 1\ a

plane -l a

A(a. n) = «(c;)' - W') -r«c/)' - W'»)(a' n)n +r(c/)' - W')a
B(a.b.n) = p'(Hr+2/1,n)n-r(b'n)a
O(a, b. n) = (b' n)la - (a' n)I'n+ p'(Hr + 2/1 ,x) (a - (a' nln)

n" = 0.02, p'/p" = 2.5n'!n";

fl, = 6000 MPa; ).jfl, = 25( = > T > 0) or As!fl, = 15( = > T < 0) ;

friction angle ljJ = 30, dilatancy angle X = 0, Lode angle I = 20.

The plastic potential P and normal to the yield surface Q include the friction and dilatancy
angles and the stress state involves the Lode angle I; these quantities are defined by eqns
(3.32) and (5.5) in the above reference. Figures 5-9 display the decay coefficient X associated
to the largest plastic wave-speed for appropriate ranges of the plastic moduli starting at the
elastic limit, that is 2fls!H = O. The directions of propagation n belong to the plane defined
by the stress-eigenvectors associated to the major and minor eigenstresses, the angle made
by the normals n and the direction of the major stress-eigenvector is denoted by 8; recall
that the direction of propagation affects the sign of the scalar x, eqn (A5). When T is
negative, flutter is possible for a certain range of plastic moduli and in certain directions of
propagation (see Figs 5 and 8(b) of Loret and Harireche, 1991). Figures 5-7 are in
agreement with these observations. In contrast, when T is positive, flutter is excluded for
any plastic modulus and any direction of propagation as illustrated by Figs 8 and 9. The
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250. r---------------------,
Re(XI

&.50·

1.2\!s /H

-250. L- ....J

o.
Fig. 5. Incompressible constituents, 'material I' with i.~! /1, = IS. leading to 1: < O. Variations of the
decay coefficient associated to the largest plastic wave-speed as a function of the plastic moduli. For
the direction of propagation defined by Ii = 50 . the scalar x is positive; consequently. this plot is a

quantitative example of the sketch shown in Fig. I.

00.
I '----) I &,70°
I

1 ~.
I
I

I

~
I

t---.. I

00\

~ ,----o.
1-250.

0.0 0.5
00.-10

10
Re(X

1- (1.--.,
2 roW'

500.o.
2\!s/ H

Fig. 6. Incompressible constituents. same as Fig. 5 but for a direction of propagation defined by
Ii = 70 leading to x> O. Notice the different ranges of interest with respect to Fig. 5 for the plastic

moduli and decay coefficient.

150.
X

1
--2-' 121. 359
rnw &,40°

1.

o. '-.....-...1
0.0

&.20°

&,10°

10.

Fig. 7. Incompressible constituents. same as Fig. 5 but for dlfections of propagation leading to
x < 0; consequently. this plot is a quantitative example of the lower curve shown in Fig. 3 with

1:" = I for the larqest wave-speed.

important point here is to note the quantitative influence of the plastic moduli and of the
directions of propagation on the values of the decay coefficients.

6. GROWTH AND DECAY FOR COMPRESSIBLE CONSTITUENTS

The analysis for compressible constituents parallels that of the previous section
although the complexity of algebra prevents us to obtain completely explicit results. For a
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150.
X

~ 9,400

~
9,300

&,20 0

&,100

o.o.
2~S/H

10.

Fig. 8. Incompressible constituents, 'material ]' with i.~!P. = 25. leading to T > O. thus excluding
flutter and for directions of propagation associated to x < 0; consequently, this plot is a quantitative

example of the upper curve shown in Fig. 3.

250. ,..-------------------=----.
X

10.
2~S/H2~S/Hsta'0997

o. L---!" .......---o ---l

O.

Fig. 9. Incompressible constituents. same as Fig. 8 but for directions of propagation leading to
x> 0; consequently, this plot is a quantitative example of the upper curve shown in Fig. 4.

plastic eigenvalue W" of single multiplicity, one computes first the eigenvalues W"(O that
make singular the matrix Z" = A# + (E" - W"I4 • The determinant of the matrix Z" can be
cast in the form:

(74)

(75)

The coefficients u;(O. i = I to 3, above are given in Appendix B. Like for incompressible
constituents, if the shear-wave speed has multiplicity one, one reads from eqn (74) that the
associated decay coefficient is equal to I. Let us consider now the plastic wave-speeds. In
order to obtain the solutions W2 of the cubic equation (75), let us introduce the coefficients:

(76)

z. = (_ Cl _ / R)I 1

2 v (77)

The three roots are:
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(78)

W~ = (79)

(80)

If the discriminant R is negative, u and l' are complex conjugate and the three roots are
real. Thus the three decay coefficients are obtained by differentiation of eqn (75) :

dwf
d(

~(Wf+ L;I)+ ~:
I du 1 ~ - s

~- - - -_._'"~----~---

3 d(
3(Wf+~}+p

kE[L3], (81 )

where the derivatives are estimated at ( = O. Notice that the denominator appearing in the
above expression is non-zero for the root wf: on the other hand, it tends to zero as the
two other roots tend to coalesce when the discriminant R approaches O. Therefore, near a
plastic double rooL the decay coefficients are again unbounded.

If the discriminant R is positive, u and r are real and so wf is real and W~ and W;
are complex conjugate. Consequently in the directions and for the material parameters that
imply R to be positive, the so-called flutter region, the decay coefficient associated to the
real root WT is still given by eqn (81) for k = I and the decay coefficients associated to the
complex conjugate roots arc equal and bounded:

Remark 6.1

(dW~) (d W;\
Re - d( - = Re d() =

I dWT
2 d( . (82)

On dynamic compatibility. We have pointed out that the matrix E, eqn (43), is semi­
definite positive. Consequently, irrespective of the associative or non-associative character
of the flow rule, there is the possibility of wave-propagation without diffusion. Let us see
briefly how the elastic dynamic compatible case analyzed by Biot (1956) and Bowen (1976)
is recovered using the procedure described in Remark 4.1. First the elastic shear-wave
speed has multiplicity at least two and so a direct method is required to calculate the
associated decay coefficient. On the other hand, if the two longitudinal wave-speeds are
distinct say c~, > c~, eqn (B.19), the two remaining roots W,2" ((), <:Jj = ± L to eqn (75) are

and therefore, at ( = 0,

(84)

where Co is termed the wave-speed of the "frozen mixture':



1602 B. Loret et al.

(85)

The speed Co is a longitudinal wave-speed if

i" +21ls + i.s" i." + i"" ,
-----= ---- = Co·

ps p"
(86)

Notice that the second inequality in (85) is just a consequence of the first one. So if
((i,,, +A"J/ p") 1 2 is a longitudinal wave-speed, it is non-diffusive and the second longitudinal
wave-speed, (i,,,/pH - i. m / pS)I!2, has a decay coefficient X = 1+ pSIp". Thus the upper and
lower bounds defining the range of the decay coefficients, eqn (56), are realized sim­
ultaneously by the dynamically compatible parameters. If the constitutive parameter A.,,, is
positive, like for sand, eqns (10), (11), the non-diffusive wave-speed is the largest one.

Figures 1O~14 are intended to quantify the above discussion. For that purpose, the
material termed 'material 4' in Loret and Harireche (1991) which is representative of a
sand is considered. Its characteristics are as follows:

n" = 0.19,p'/p" = 2.5n'/n":

Il, = 6000 MPa; As = 9183 MPa; i." = 493 MPa; I'.m = 2102 MPa;

friction angie I/J = 15, dilatancy angle X = 0, Lode angle I = 20'.

5 • .-----------------------,
X

Fig. 10. Compressible constituents, 'material 4'. Variations of the decay coefficient associated to the
largest plastic wave-speed as a function of the plastic moduli; this plot is reminiscent of the upper

curve shown in Fig. 4, although the elastic values differ qualitatively as explained in the text.

1.2IJ.s/H

l
,-I6,500

I

!
I

-25.o.

6.309

1.
o.

25.
Re(X)

Fig. II. Compressible constituents, same as Fig. 10 but for the intermediate plastic wave-speed in a
direction for which flutter occurs in a certain range of plastic moduli; this plot is essentially similar

to the sketch displayed in Fig. I.
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15.2~S/H

1.

o• ........,..---------------------1
o. 2~S/Hsta= 1. 027

15. r--------------------,
X

Fig. 12. Compressible constituents, same as Fig. 10 but for the intermediate plastic wave-speed in
directions for which flutter is excluded; this plot is akin to the lower curve displayed in Fig. 3.

1.

I
I

8- =50 0 ../:
,

--

r

'I

o.

-25. o.

11.618

6.309

25.
Re(X)

Fig. 13. Compressible constituents, same as Fig. ]0 but for the smallest plastic wave-speed in a
direction for which flutter occurs in a certain range of plastic moduli; this plot is akin to the sketch

displayed in Fig. 2.

15.
X

11618

15.
o. L--t----------- ---l

O. 2~S/Hsta=1.027

Fig. 14. Compressible constituents, same as Fig. ]0 but for the smallest plastic wave-speed in
directions for which flutter is excluded; this plot is akin to the upper curve displayed in Fig. 3.

It can be checked that this material is almost dynamically compatible in the elastic regime:
indeed the elastic decay coefficient associated to the largest wave-speed is almost zero and
it is quite close to 1+p'!pH for the second longitudinal wave (Figs 10 and 13/14, respectively),
Figures 10-14 display the decay coefficient X associated to the largest, intermediate and
smallest plastic wave-speeds for appropriate ranges of the plastic moduli starting at the
elastic limit. As shown by Figs 11 and 13 of Loret and Harireche (1991), flutter occurs in a
certain interval of plastic moduli and in a certain fan of directions of propagation; notice
that the largest plastic wave-speed is always real while flutter is characterized by the squares
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of the intermediate and smallest plastic wave-speeds becoming complex conjugate. These
features are useful to understand the variations of the decay coefficients shown in Figs 10­
14. It may also be interesting to contrast the range of variations of these coefficients with
those of the incompressible constituents shown in Figs 5-9.

7. CONCLUSIONS

For the elastie--plastic fluid-saturated porous media analyzed in this paper, an associ­
ative flow rule is a necessary and sufficient condition for the constitutive tensor moduli to
display the major symmetry property. For associative flow rules, the decay coefficients of
the plane acceleration waves are found to be positive and bounded by the decay coefficients
in the elastic mixtures: the plane acceleration waves propagate with an amplitude that
either strictly decreases or remains constant.

A special case of deviation with respect to associative flow rules has been examined
here, the flow rules with deviatoric associativity. Analytic results have been obtained when
both fluid and solid constituents are incompressible. It has been found that. depending on
the material parameters, the decay coefficients associated to real plastic wave-speeds may
be negative and/or unbounded: the plane acceleration waves that propagate in a certain
fan of directions grow exponentially in time presumably giving rise to first-order waves.
Inside the flutter region, that is when the squares of the plastic wave-speeds are complex
conjugate, the decay coefficient is found to be strictly positive and the same for both plastic
wave-speeds. However it is found that the decay coefficient becomes unbounded, with a
positive or negative sign, as the two plastic wave-speeds tend to coalesce at the boundaries
of the flutter region. the amplitude of the acceleration waves grows or decays unboundedly.
When the fluid and the solid constituents are compressible, the results are found to have
major qualitative features analogous to the incompressible case above.

These results concerning the flutter phenomena are qualitatively distinct from what
would be obtained from an analysis in terms of harmonic waves propagating in hypoelastic
materials (Rice, 1976): for such kind of analysis the amplitudes of the harmonic waves
would grow in an oscillatory manner inside the flutter region.

Actually, the present analysis and results have features both similar to and distinct
from what would be obtained with harmonic waves. Indeed, it can be shown that the wave­
speeds provided by an harmonic analysis are equal, in the limit of an infinitely large
pulsation, to the values obtained here. Also in both analyses, the viscous effects due to
Darcy's law play no role on the determination of the onset of stationary discontinuities
since such situation corresponds to the onset of (acceleration or harmonic) waves with zero
speed of propagation. However in what concerns the onset of the flutter phenomenon, the
viscous effects play no role in the acceleration wave analysis since there exists no velocity
discontinuity at the wave front but they will be involved in the harmonic wave analysis
since the viscous terms will be present in the corresponding governing momentum equations
and characteristic equation.

Notice that the results presented in this study also differ qualitatively from those
usually obtained in single phase elastic materials (e.g. Chen, 1973) where the amplitude of
the acceleration waves may also grow but, when that happens, it becomes infinite within a
finite time. On the other hand, we have exhibited an instance where both viscous damping
and plastic dissipation may not preclude growth of the wave front. In that respect, it is
worth mentioning that this phenomenon is also observed for materials with fading memory
(Chen, 1973, p. 347) and for viscoelastic materials (e.g. D'Escatha, 1974). Also, it should
be pointed out that the viscous (diffusion) coefficient ~ only enters the analysis as a
multiplicative factor of the decay coefficient X so that it amplifies the growth or decay
phenomenon but it is not involved in the sign of X.
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APPEI"D1X A: SPECTRAL ANALYSIS FOR INCOMPRESSIBLE CONSTITUENTS

A, I. £igelll'lllues of Ihe eXlended gellerali~ede(genwlue proh!elll
It is convenient to associate the matrix Z.

A*""E .. M
Z=-+,---~I'-

1" 1" p'
(A.I)

to the matrix A*" +;E - W'M that defines the extended eigenvalue problem. The elastic contribution Z' to Z
displays the elastic shear-wave speed 1': and the elastic longitudinal wave-speed 1';

!Ii,-211
1---

V I' 1"
(A2)

which are ensured to be real by the constitutive inequalities eqns (10). The respective order of the shear and
longitudinal wave-speeds depends on the material parameters i." II, and r. If they are equal, any direction of space
is an eigendirection (see Table I above). Recall that. for an elastic behaviour, the shear wave-speed has multiplicity
at least two and the associated motion affects the solid only while the longitudinal wave affects both phases (Biot,
1956). Due to eqns (16) and (31).

Z' = r(cn'n ® n+ (c~)'(J-n ® 01- W'(J+ (r-I)n ® nJ. (A.3)

Plasticity contributes to Z by a non-symmetric dyadic product - a ® b HI" where a and b are the two vectors:

a =(E*': P)·n. b = n'(E*' :Q). (AA)

To express Z in the axes (e i = n. ee, ell, such that b' e, = 0, it is instrumental to introduce the scalars x and.\' with
dimension of square of wave-speed defined by

and then

(a 'n)(b'nl
x = x(n) = - .

21',1"

a'b- (a'n)(b'n)
\. = r(n) = ----.--
.. 21"f>'

(A.5)
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Z=

r((en' +~ - w,)+ 2/l, x
r(n")' H

I a,b,

H p'

I a,b,

H p'

(e')'+"-W'- 2/l,v
,S H'

I a,b,
-~~-

H p'

o

o (A.6)

The determinant of the matrix Z can be cast in the form:

det Z = ((e;)' + ~ - W')F( W').

F(W') = uoUV')'+u,(()W'+u,(O.

The coefficients Ui • i = 0 to 2. involve an elastic and an elastic-plastic contribution

(A.7)

(A.8)

i = 0 to 2. (A.9)

For each i E [0, 2], the elastic contribution u,' is a polynomial of degree i in ~ while the elastic-plastic contribution
u'p is a polynomial of degree max (i -I. 0) :

(
I \

u,,(() = - r((e;)' + (e;)') - ~r 1+ ~.~.,),
\ r(n")-

U2p(() = -ry(e;)' +(e;)'x+~('x-~)'.
(nT

(A.lO)

(A.II)

(A.12)

(A.l3)

(A.14)

(A.15)

A.2. Eigenvectors of the generalized eigenvalue problem
It is convenient to highlight the elastic and plastic contributions to the matrix Z = Z(( = 0) associated to the

generalized eigenvalue problem (30). Indeed, according to (A.3).

la@b
Z = Z'-~-~.

H p'
(A.16)

Let W be a plastic wave-speed different from the elastic wave-speeds. Then the matrix Z' is non-singular and
the right eigenvector eR is simply

Explicitly.

b'eR

eR = --(Z') I 'a.
Hp'

(Z') , I 0+( I _ I )O@O.
(c;)' - W 2 r((e;)' - W') (e;)' - W'

(A.17)

(A.18)

For neutral waves. the strain-rate discontinuity is tangent to the yield surface in strain-space so that b' eR is
zero. Then either x or y is zero. At least one plastic wave-speed equals an elastic wave-speed and the eigenvectors
eR may describe a space of dimension one. two or three; alternatively the eigenspace may be defective by one or
two dimensions. Table I summarizes all possibilities. Recall that these 3-component eigenvectors eR describe the
motion in the solid phase, the associated motion in the fluid phase is given by eqn (50), namely by -n'/n"(eR

, 0)0.

The left eigenvectors eL are simply obtained by exchanging the roles of the vectors a and b (see eqn A.16).

APPENDIX B: SPECTRAL ANALYSIS FOR COMPRESSIBLE CONSTITUENTS

B.l. Eigenvalues of (he extended eigenvalue problem
For compressible constituents. it is more convenient to work on the eigenvalue problem of eqn (27) in order

to highlight symmetries. Thus we define the extended eigenvalue problem by the matrix Z":
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Z' = A#+(E#- W'1 4 .
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(B.l)

Plasticity contributes to Z' by a non-symmetric dyadic product - a' ® b'. H where a and b are the two constitutive
vectors

a=(E":P)·o. b=o'(E":Q)

but a and b follow transformations different from those of eigenvectors. eqn (26):

a# = M-\ , . a. b# = M I'. b.

The determinant of the matrix Z' can be cast in the form:

detZ' = -«c~)'+(- W')F(W').

The coefficients u, involve an elastic and an elastic-plastic contribution

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

For each i E [I. 3]. the elastic contribution u" is a polynomial of degree i in ( while the elastic-plastic contribution
uip is a polynomial of degree i-I in (. The zeroth-order terms have been given in Loret and Harireche (1991 ) but
they are recorded here for completeness:

a' b i.,;'
u\p(Oj = - + -trPtrQ.

p' p"

(
i, + 2ji., i.",.) a' ,b i., + ji., (a' o)(b' 0)

U2p(0) = - --- + -- - + --- -'---'--'----'-
p' p" p' p' p'

(B.7)

(B.8)

(B.9)

(B.IO)

i· 1 + 3J1\ ;-\~\ ; •.\\1/'\1I

- ---trPtrQ+ --(trQ(a·o)+trP(b·o)). (B.II)
p' p" p"p"

(
i~ + 2ji., a' ,b i., +.ji., (a' o)(b' 0)) i."

u3p (0) = ----- - -- -

p' p' p' p' p"

(
i" + 2ji., i.,;, i.").,,, ') ji.,

+ ----trPtrQ- --,(trQ(a'o)+trP(b'o) -.
p' p" p'p" p'

The derivatives of interest are given below:

du:,(O) = _ (2 + .iC).
d~ p"

dU2e i·.1 + 2fl\ I· x + 2j..ls + 2;'h' T 2i.,m
-,(0)=--+ .
d, p' P"

du" i., i." II, i., + 3i." - 2i.", - 2ji.,
-,(0) = - -- - - .
d" p' p" p' p"

du\p
df(O) =0.

du. p , ( P"f3'b i.,;' i,,"-d;(0) = - 1+- ,-2-trPtrQ--(trQ(a'o)+trP(b'o)),
> p" p" p" p"

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.l7)
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d . J . J . b' J . ( )b
_u_~_p(0) = I., - ~f.1. ~ I." + ~/.,,, _a'__ ~/.,_+-,-f.1_,+_~_I.=,,, a' 0 ( '0)

d, p" p' p" p'

i, + 3", i.,;, i.", (i.", - f.1,J+ - --trPtrQ- (trQ(a'o)+trP(b'o)). (8.18)
p p" p'p"

The above coefficients use the three elastic wave-speeds. namely the shear wave-speed c' and the two longitudinal
wave-speeds c; and c;,. The laller are defined implicitly by the following relations:

(C~)' = f.1c',
p'

, ., i.. + 2", I."
(c;)- + (t;,)- = --- +

p' p'
(B.19)

B.2. Eigem'ectors of the normo!i::.ed eigenwlue prohlem
It is convenient to highlight the elastic and plastic contributions to the matrix Z"(; = 0) associated to the

normalized eigenvalue problem (27). Indeed.

I
Z# = Z*'- -a#@b*.

H
(8.20)

The elastic contribution Z"' to Z" may be expressed componentwise using cartesian coordinates (e, = o. e,. e,):

i., +21'-
-W' 0 0

p'

0 I'. W' 0-

Z#f: P
=

0 0
II,

-W'
1"

I.\l'.
0 0

"
p'p"

yP'P'

o
(B.21)

o

I.:', _ W'

P

Let W' be a plastic wave-speed different from the elastic wave-speeds. Then the matrix zoe is non-singular and
the right eigenvector e#R is simply

or componentwise in terms of the original vector a:

(B.22)

where

b*' e#R
e#R = __

H

((i." p" - W' )0, - (i.",i.", p") tr P) (>0/ P'tj,,)

0, (" p),)

(- (i.",. p')o, + ((i., - 2,1. )p' - r-V' )i.,,, tr P)(y p"/;,,)

(B.23)

It" =((c;)'-W')((c;,J'-W'). t. =(c:)'-W'. (B.24)

For neutral waves. the strain-rate discontinuity is tangent to the yield surface in strain-space so that
b'· e'R = b' e

R is zero and at least one plastic wave-speed equals an elastic wave-speed. The complete analysis is
not detailed here. Recall that the three first components of these 4-component eigenvectors e#R or eR describe the
motion in the solid phase. the associated motion in the fluid phase is given by the fourth component. The left
eigenvectors eel are simply obtained by exchanging the roles of the vectors a' and b" (see eqn B.20).


